دنیای تسخیر شده توسط ربات‌ها، درآینده‌ای نه چندان دور، شدیدابه توانایی برای استقرارموفقیت‌آمیزهوش مصنوعی(AI)وابسته است. بااین حال، تبدیل ماشین‌هابه دستگاه‌های مبتنی بریادگیری وتفکر، آنقدرهاهم که به نظرمی‌رسدآسان نیست. هوش مصنوعی تنهاباماشین لرنینگ یایادگیری ماشینی(ML)قابل دستیابی است؛ هوش مصنوعی به ماشین‌هاوربات‌ها کمک می‌کندتامانندانسان‌ها فکر کنند.

اما ماشین لرنینگ چیست؟ در ادامه قصد داریم تعریف واضح و روشنی از این پرسش ارائه دهیم و شما را با انواع ماشین لرنینگ و بهترین مسیر یادگیری آن آشنا کنیم.

ماشین لرنینگ چیست؟

در پاسخ به این پرسش که ماشین لرنینگ چیست؟ می‌توان گفت: Machine Learning یا یادگیری ماشینی یک برنامه کاربردی از هوش مصنوعی است که سیستم‌ها را قادر می‌سازد تا بدون برنامه‌ریزی، از تجربه خود یاد بگیرند و پیشرفت کنند. یادگیری ماشینی بر توسعه برنامه‌های رایانه‌ای متمرکز است که می‌توانند به داده‌ها دسترسی داشته باشند و از آن برای یادگیری خود استفاده کنند.

به عبارت دیگر در پاسخ به سوال یادگیری ماشین چیست؟ می‌توان گفت: یادگیری ماشینی یک حوزه مطالعاتی بزرگ است که با بسیاری از زمینه‌های مرتبط مانند هوش مصنوعی هم‌پوشانی دارد و ایده‌هایی را به ارث می‌برد. هدف اصلی ML این است که به کامپیوترها اجازه دهد بدون دخالت یا کمک انسان به طور مستقل یاد بگیرند و بر اساس آن اقدامات را تنظیم کنند.

تمرکز رشته یادگیری ماشین بر یادگیری است، یعنی کسب مهارت یا دانش از تجربه که به معنای ترکیب مفاهیم مفید از داده‌های تاریخی است.

یادگیری ماشین بدون نظارت چیست؟

در مقابل روش با نظارت، در یادگیری بدون نظارت از الگوریتم‌هایی استفاده می‌شود که وظیفه تشخیص پترن یا الگوهای داخل داده‌ها را انجام می‌دهند. این الگوریتم‌ها سعی می‌کنند شباهت‌ها را پیدا کنند تا با استفاده از آنها داده‌ها را به مقوله‌های مختلف طبقه‌بندی کنند. برای مثال هنگامی که از یک فروشگاه اینترنتی خرید می‌کنید از این الگوریتم‌ها برای کنار هم قرار دادن آیتم‌های مرتبط با جستجوی شما استفاده می‌شود. یا اگر از گوگل نیوز استفاده کنید متوجه می‌شوید که از این الگوریتم‌ها برای کنار هم گذاشتن موضوعات مشابه و تاپیک‌های مرتبط استفاده می‌شود.

این نوع الگوریتم برای شناسایی انواع مشخصی از داده طراحی نشده است، بلکه به سادگی به دنبال داده‌هایی می‌گردد که بر اساس مشابهت می‌توانند کنار هم قرار بگیرند. همچنین می‌تواند موارد متفاوتی که بیرون از این دسته‌ها قرار می‌گیرند را تشخیص بدهد.

یادگیری ماشین تقویت شده چیست؟

برای فهمیدن یادگیری ماشین تقویت شده می‌توانید به نحوه‌ای که یک نفر یاد می‌گیرد یک بازی قدیمی کامپیوتری را بازی کند توجه کنید. فرد در ابتدا نه قواعد بازی را می‌داند و نه می‌داند چطور باید آن را کنترل کند. در حالی که آنها ممکن است کاملاً تازه وارد باشند، با نگاه کردن به ارتباط بین دکمه‌هایی که فشار می‌دهند و اتفاق‌هایی که در تصویر می‌افتد، و امتیازی که در بازی به دست آورده یا از دست می‌دهند، کم کم یاد گرفته و بازی آنها بهتر و بهتر می‌شود.

یکی از کاربردهای یادگیری ماشین تقویت شده در شبکه-Q عمیق در مجموعه گوگل دیپ مایند است. این سیستم توانسته در مجموعه گسترده‌ای از بازی‌های ویدئویی قدیمی با استفاده از دوره یادگیری ماشین انسان‌ها را شکست دهد. این سیستم با پیکسل‌هایی از هر بازی تغذیه شده و اطلاعات مختلف در مورد حالت بازی، مثل فاصله بین چیزهای مختلف در تصویر را تخمین می‌زند. سپس این موضوع که چطور حالت بازی و کنش‌هایی که در آن انجام می‌شوند با امتیاز نهایی ارتباط برقرار می‌کنند را بررسی می‌کند.

در نهایت با بررسی چندین باره روند بازی، سیستم به مدلی دست پیدا می‌کند که با استفاده از آن امکان به دست آوردن بالاترین امتیاز در بازی به وجود می‌آید.

نتیجه

با توجه به مطالب گفته شده در پاسخ به این سؤال که ماشین لرنینگ چیست؟ باید گفت: یادگیری ماشینی (ML) یا ماشین لرنینگ نوعی هوش مصنوعی (AI) است که به برنامه‌های نرم‌افزاری اجازه می‌دهد تا در پیش‌بینی نتایج دقیق‌تر شوند، بدون اینکه به صراحت برای این کار برنامه‌ریزی شده باشند. الگوریتم‌های ماشین لرنینگ از داده‌های تاریخی به عنوان ورودی برای پیش‌بینی مقادیر خروجی جدید استفاده می‌کنند. همچنین در میان زبان‌های برنامه‌نویسی، زبان برنامه‌نویسی پایتون یکی از بهترین و سازگارترین زبان‌های برنامه‌نویسی در زمینه ماشین لرنینگ است. برای اطلاعات بیشتر حتماً به بوت کمپ ماشین لرنینگ در سایت بوتکمپ برنامه نویسی مپصا اچ ار (mapsa HR) مراجعه کنید.

*** محتوای این مطلب تبلیغاتی است و ایرنا مسئولیتی درباره آن ندارد.